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Coil-globule transition of a semiflexible polymer driven by the addition of spherical particles

Richard P. Sear*
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90024

~Received 3 November 1997!

The phase behavior of a single large semiflexible polymer immersed in a suspension of spherical particles is
studied. All interactions are simple excluded volume interactions and the diameter of the spherical particles is
an order of magnitude larger than the diameter of the polymer. The spherical particles induce a quite long
ranged depletion attraction between the segments of the polymer and this induces a continuous coil-globule
transition in the polymer. This behavior gives an indication of the condensing effect of macromolecular
crowding on DNA.@S1063-651X~98!02107-2#

PACS number~s!: 36.20.2r, 61.25.Hq, 82.70.Dd
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I. INTRODUCTION

Phase separation and partitioning driven by excluded
ume interactions have been well studied theoretically@1–8#,
with the inspiration coming from experiments both on sy
thetic colloidal systems@2,3,9# and on biologically derived
systems@10,11#. When excluded volume effects are dom
nant the properties of a mixture are determined solely by
sizes and shapes of its components. For example, mixture
long narrow rodlike particles and spheres have been sh
to demix solely because of these differences in size
shape@5,7#. The rodlike particles could be a minimal mod
of a semiflexible polymer or of a micelle, and the sphe
could be small colloidal particles or even compact prot
molecules. But if the semiflexible polymer is very long th
even a single, isolated molecule can undergo phase tra
tions @12–16#, because it is then large enough, has eno
degrees of freedom, to be treated as a thermodynamic sy
@12#. Here we study such a polymer, mixed with spheres,
see if the presence of the spheres can induce a phase t
tion. We find that they can. When the concentration
spheres exceeds a critical value the polymer molecule c
tracts and expels the spherical particles. In effect the poly
molecule and the spheres are demixing. The mixture of m
short rodlike polymers and spheres demixed to form a ph
with a high density of rodlike polymers but a low density
spheres~coexisting with one with high sphere density a
low rod density! and here the polymer contracts to form
dense globule with a high density of polymer but a low de
sity of spheres. This dense phase of a polymer is referre
as the globular phase@12–16# and the contraction of the
polymer is the coil-globule transition.

In the work presented here, we will draw on existing the
ries for the demixing of spheres and semiflexible polym
@7# and for the coil-globule transition@14,15#. The theory for
the mixture of spheres and semiflexible polymers@7# is a
straightforward virial expansion of the Helmholtz free e
ergy, truncated after the second virial coefficient terms.
the free energy expressions of Ref.@7# the two components
of the mixture were treated symmetrically. While this is
course perfectly valid, here we want to use the analogy
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tween demixing and the vapor-liquid phase separation o
pure substance@1–3,17#. To do this we will Legendre trans
form @18# the Helmholtz free energy into a semigrand pote
tial @17,19#. This semigrand potential is then a function
the density of the polymer and the chemical potential of
spheres. A chemical potential, like the temperature, is u
form throughout any system at equilibrium; it is a field va
able not a density. So, the semigrand potential has the s
form as the Helmholtz free energy of a polymer that intera
via interactions that are not solely excluded volume and
depend on temperature. Both depend on the density of p
mer and on a field variable: temperature in the case o
polymer with soft interactions, and the chemical potential
the spheres for the polymer mixed with spheres. In parti
lar, both thermodynamic functions can be expanded a
virial series in the density of polymer with coefficients th
depend on temperature or chemical potential of the sphe
Just as reducing the temperature of a polymer molecule w
attractive interactions can make some of its virial coefficie
negative, increasing the chemical potential of spheres dr
some of the virial coefficients of the semigrand potential
the mixture of polymer and spheres negative. In both ca
the effect is the same: the polymer contracts from the c
state to the globular state. The spheres have in effect indu
an attraction, often called a depletion attraction, between
segments of the polymer molecule.

The interactions between the segments of a polymer m
ecule determine its state. Note that we always conside
single, isolated polymer molecule. If the interactions b
tween the polymer segments are repulsive, the good sol
regime, then the polymer exists as a swollen coil@12#. The
radius of gyration of the polymer, a measure of its si
scales with the number of segmentsN as N3/5 ~actually the
exponent is slightly less than 3/5@16#!. So, the volume oc-
cupied by the polymer molecule scales asN9/5. The exponent
is greater than one and so the average density of segm
inside this volume tends to 0 asN tends to infinity. However,
if the interactions between the segments of the polymer
sufficiently attractive, the poor solvent regime, the polym
exists in a condensed state, the globular state@12,14–16#.
There the radius of gyration of the polymer scales asN1/3

and so asN tends to infinity the average density inside t
polymer remains nonzero. The crossover from the radius
724 © 1998 The American Physical Society
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gyration scaling asN3/5 to N1/3 marks the coil-globule tran
sition.

Motivation for studying the current model mixture is pr
vided by an interest in the phase behavior of long DN
double helices. The DNA double helix is a semiflexible po
mer, its persistence length@20# is ;50 nm@21#, which is 25
times its diameter of;2 nm. Our semiflexible polymer with
only excluded volume interactions is a crude model of DN
in a good solvent@20,21#. Our model mixture is then a crud
but not unreasonable model of a long DNA molecule in
suspension of spherical particles, in the absence of any
cific DNA–spherical-particle attraction. Thus, our results i
ply that DNA can be condensed using colloidal spheres.
far as we are aware this has not been attempted. Howe
there are a number of experimental techniques for cond
ing DNA, such as altering the solvent, adding polyvale
salts, etc.; see Refs.@22,23# and references therein. Howeve
all these techniques produce a sudden collapse of the D
to a dense state in which the separation between adja
parts of the DNA is only a few nm and the DNA has he
agonal order. The collapse induced by the colloidal sphe
is continuous and it is then possible to prepare a low den
isotropic globule of DNA. As far as we are aware this is t
only way of preparing a low density globule of a semifle
ible polymer such as DNA. Our system may also be usefu
a very crude model of the effect of ‘‘macromolecular crow
ing’’ on DNA actually in cells, see Refs.@10,11,24# and ref-
erences therein.

II. MODEL

The polymer is modeled by a homogeneous cylindri
elastic filament@20#. The filament follows a continuou
curve in space; see Fig. 1. The filament bends and fle
during thermal motion but it has a certain amount of rigidi
measured by its persistence lengthP @20#. A piece of poly-
mer shorter than the persistence length only bends by a s
amount due to thermal motion, it behaves almost like a ri
rod. The polymer has a hard core of diameterD, that is the
center line of the polymer cannot approach withinD of itself.
The polymer isN persistence lengths long; in our calcul
tions we will always consider the limit ofN→`.

The colloidal spheres are modeled by hard spheres wi
diameter Ds . The polymer-sphere interaction is also

FIG. 1. A schematic of our semiflexible polymer~the solid
curve! immersed in a suspension of spherical particles~the shaded
circles!.
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excluded-volume interaction. The center of a sphere can
approach within (D1Ds)/2 of the center line of the polymer

III. THEORY

We only consider explicitly the globular state of a sing
isolated polymer molecule in theN→` limit. We also ne-
glect any variation in the density of polymer segments in
globule; the volume approximation of Lifshitz and co
workers@14,15#. Then the globule is simply a bulk phase
volumeV in which theN polymer segments are distribute
with a uniform densityr5N/V. Far from the coil-globule
transition and for largeN this is reasonable, then the globu
is expected to resemble a drop of liquid—the density is u
form except for a narrow interfacial region at the surface
the globule. It should be borne in mind that the assumpti
behind our free energy break down at the transition its
They provide an estimate of what density of colloidal pa
ticles is required to induce a coil-globule transition of t
polymer but cannot say anything about the critical behav
at the transition. For a detailed study of the region of t
transition, see Ref.@25# and references therein.

The starting point is a virial expansion of the Helmho
free energyAg , of a globule, in theN→` limit. This free
energy has had the free energy of the polymer in the id
coil state subtracted off. The volumeV enclosed by the glob-
ule includes solvent, which we do not treat explicitly, a
colloidal spheres. These spheres are at a densityrs which is
uniform within the globule. Then@14,20#

bAg

V
5r2B21rs@ ln rs21#1rs

2B2
ss1rrsB2

ps , ~1!

whereb51/(kT), for T the temperature andk Boltzmann’s
constant. The virial coefficientsB2, B2

ss andB2
ps are the sec-

ond virial coefficients of the polymer-polymer, the spher
sphere, and the polymer-sphere interactions, respectiv
We have neglected the contribution of the momentum
grees of freedom as they do not affect the phase behavio
is this which has caused the argument of the logarithm in
~1! to have dimensions of inverse volume. In the absence
colloid Ag is just equal to the first term on the right-hand si
of Eq. ~1!. This term gives the increase in free energy w
density due to the excluded volume interactions. The entr
cost in compressing a coil into a globule with a finite dens
r is not of orderN and so is not included in Eq.~1!. The
virial coefficients are given by

B25
p

4
P2D,

B2
ss5

2p

3
Ds

3 , ~2!

B2
ps5

p

4
P~D1Ds!

2.

B2
ss is the second virial coefficient of hard spheres of dia

eterDs . The above expression forB2
ps is the volume a rigid

cylinder of diameterD excludes to a sphere of diameterDs .
Equation~2! for B2

ps therefore neglects the curvature of th



.
r-
ts

n
f

q

h
se
ty
f
e

en
th
il-

y

m

a

en
h

oly
d
ie
r o
E

.
s

th
o
r-
ess
. The
on-

its

as

y a
his

at
ing

e if
pen-

wo

of

l.
ugh
e is

726 PRE 58RICHARD P. SEAR
polymer, but so long asP.Ds the polymer curves gently on
a length scale ofDs and this approximation is a mild one
The second virial coefficient of the polymer-polymer inte
actionsB2 is obtained by splitting the polymer into segmen
of length less thanP but much larger thanD and then as-
suming that these interact as rigid rods@20#. Consider a poly-
mer of lengthL, we split it up intoL/ l segments of lengthl .
The excluded volume of two cylinders of lengthl is
(p/4)l 2D if l @D. So, the volume excluded to one segme
by the others is (p/4)LlD , and this times the number o
segmentsL/ l gives the total excluded volume, (p/4)L2D.
Dividing this total excluded volume byV and realizing that
L/P5N we see that we have obtained the first term in E
~1!.

The volumeV occupied by the globule is within a muc
larger volume of colloidal suspension, which acts as a re
voir of colloid, thus fixing its chemical potential. The densi
of the colloidal spheres is different inside and outside o
globule, thus it is more convenient to work with not th
density of the spheres but their chemical potential, which
of course always uniform. The coil-globule transition is th
brought about by increasing the chemical potential of
spheres.~This is completely analogous to inducing a co
globule transition by reducing the temperature.! The chemi-
cal potentialbms is equal to the derivative of the free energ
of Eq. ~1! with respect tors :

bms5 ln rs12rsB2
ss1rB2

ps. ~3!

Under conditions of fixedr and ms the correct thermody-
namic potential is not the Helmholtz free energy but a se
grand potentialVg defined by@18#

Vg

V
5

Ag

V
2rsms . ~4!

Using Eqs.~1! and ~3! this becomes

bVg

V
5r2B22rs2rs

2B2
ss. ~5!

We now go over to reduced units. Two reduced densities
defined: z5rB2 and fs5rsB2/4. For semiflexible chains
with P@D the isotropic-nematic transition occurs betwe
an isotropic phase withz53.29 and a nematic phase wit
z54.19 @20#. fs is the volume fraction of colloid. Hard
spheres solidify at a volume fraction close to one-half. W
have given the reduced densities at which semiflexible p
mers and spheres order as they give a good idea of the
sities at which interactions are significant. For densit
much less that those given for the transitions the polyme
fluid of spheres is close to ideal. Then in reduced units,
~5! is

bVg

N
5z2

3

2

fs

z
~114fs!, ~6!

and Eq.~3! is

ln zs5 ln fs18fs1S D

P D S 11
Ds

D D z, ~7!
t

.
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wherezs5exp(bms)B2
ss/4 is a reduced activity of the colloid

The volume fractionfs of an ideal gas of colloidal sphere
in the absence of polymer is equal tozs , in the presence of
excluded volume interactionsfs,zs . Note that Eq.~6! ex-
pressesVg as a function offs , not zs . To calculateVg as a
function ofzs we have to solve Eq.~7! for fs at the specified
value ofzs . This can be done numerically. The pressurep of
the globule can be obtained by taking the derivative ofVg ,
Eq. ~6!, with respect toz.

IV. RESULTS AND DISCUSSION

A mixture is specified by the values of the three leng
scales:D, P, andDs . All interactions are athermal and s
the only energy scale iskT. Phase behavior is solely dete
mined by dimensionless ratios and the only dimensionl
ratios that can be defined are then those between lengths
mixture’s phase behavior is determined by two dimensi
less ratios of lengths, we chooseP/D and Ds /D. The per-
sistence length of DNA is around 50 nm or 25 times
diameter of 2 nm@21#. So, we setP/D525. The ratioDs /D
is set equal to 15 for our calculations. This value is chosen
we estimate~see below! that for values ofDs /D of order 10
the continuous coil-globule transition is not preempted b
collapse to a dense hexagonal globule. We will return to t
point when we discuss our results.

At equilibrium the pressure is uniform, which means th
it must be the same inside the globule as in the surround
colloidal suspension. A stable globule is then only possibl
its pressure equals the pressure of the surrounding sus
sion, which is given by thez50 limit of the pressure derived
from Vg . Local stability also requires that at that value ofz
the pressure is an increasing function ofz.

In Fig. 2 we have plotted pressure-density plots at t
values ofzs , 0.5, and 1. At the smaller value ofzs the pres-
sure is a monotonically increasing function of the density
the polymer and so no phase with nonzeroz, i.e., no globular
phase, is stable. Atzs50.5 the polymer exists as a coi
However, forzs51 the pressure first decreases, goes thro
a minimum, and then increases. So, here the coil stat

FIG. 2. Plots of the reduced pressurep85bpB2 of a globule as
a function ofz, at constantzs . The solid curve~plotted on the left
hand pressure scale! is for zs50.5, and the dashed curve~plotted on
the right hand scale! is for zs51.
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unstable and the polymer exists at a density given by
condition that its pressure equals the pressure atz50. Note
that zs can easily be converted into the density of colloid
the suspension outside the globule using thez50 limit of
Eq. ~7!.

As the chemical potential of the spheres is increased
slope of the pressure versusz curve atz50 goes continu-
ously to zero and then becomes negative. This correspo
to a continuous coil-globule transition. This is seen in Fig.
where we show the density of the globule as a function ofzs .
As the transition is approached from above, i.e., high val
of zs , the density of the globule goes continuously to ze
The slope of the pressure curve atz50 is given by the
coefficient of the term linear inz in the Vg—the second
virial coefficient term inVg . The transition is at the poin
when this second virial coefficient equals 0. There the th
virial coefficient is positive and so theVg of Eq. ~6! has the
same form as the free energy studied by de Gennes@12,26#.

We have found a continuous coil-globule transition f
our semiflexible polymer. However, experiments on DN
@23,22# show a first order transition, as does a theory
polymers of long rigid segments with short ranged attr
tions @28#. The reason for the difference is that the colloid
spheres induce a depletion attraction with a range;Ds . This
is not much shorter than the polymer’s persistence length
contrast to the attraction in both the DNA in the experime
@23,22# and the model of Ref.@28#. When the range of the
attraction is much less than the persistence length, then
higher order virial coefficients are already negative when
second virial coefficient becomes negative@28,27#. The free
energy is then not of the form considered by de Gennes
others @12–16,26#, and the continuous transition is pre
empted by a first order transition to a dense globule with
least nematic ordering. Thus, we predict that if the co
globule transition of DNA is induced not by altering th
quality of the solvent or adding polyvalent ions but by mi
ing in a colloidal suspension the transition will be contin
ous, not first order.

Equation~6! for Vg is only valid when the polymer is in
the isotropic phase. We now check that the transition p
dicted with this potential is not preempted by a transition
a dense ordered phase. This is easy to do as the isotr

FIG. 3. The density of the globulez as a function of the col-
loid’s activity zs . The density goes to 0 at the coil-globule tran
tion, which is atzs50.515.
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nematic transition of~pure! semiflexible chains is at a re
duced pressurep85bpB2.26 @20#, much higher than the
pressure of the transition we have found; see Fig. 2. Ther
no possibility of a dense nematic or hexagonal globule for
ing at this density of the colloid; the pressure inside any s
globule would be much higher than the pressure of the c
loidal suspension outside. Note that this conclusion relies
the spheres being large, i.e., on the ratioDs /D being large.
At fixed volume fraction of the colloidal suspension, its pre
sure varies asDs

23 . For values ofDs of the order ofD the
situation is very different. A suspension of spheres of t
size can easily be at a pressure equal to the pressure
dense~pure! nematic or hexagonal phase of the polymer.
addition, the overlap of the excluded volumes of two po
mer segments only occurs when the two segments are c
within Ds;D of each other. By excluded volumes we me
the volumes of space excluded by the polymer segment
the spheres@1#. Thus the attraction is now short ranged,
range is much less thanP and we expect a first order trans
tion, as in Ref.@28#.

Finally, in Fig. 4 we show the colloid density inside an
outside the globule, as a function ofzs . We see that for the
values of the parametersP/D andDs /D that we have taken
a volume fraction of colloid a little more than 0.15 is re
quired to induce the coil-globule transition. The colloid de
sity outside the globule is just that of a fluid of hard sphe
at that value ofzs , within the second virial coefficient ap
proximation. It therefore increases aszs increases. The col-
loid density inside the globule, however, decreases aszs in-
creases, due to the increasing polymer density of the glob

V. CONCLUSION

We have studied a system of a large, isolated semiflex
polymer molecule in a suspension of spherical particles
diameter an order of magnitude larger than the diamete
the polymer but much much less than the radius of gyrat
of the polymer. The solvent for the polymer was good so
found that at low densities of the spheres the polymer wa
swollen coil. However, as the density of spheres was
creased beyond a certain point the polymer underwent a c
globule transition. The polymer molecule and the sphe

FIG. 4. The density of the colloidal spheresfs outside~solid
curve! and inside~dashed curve! as a function of the colloid’s ac-
tivity zs .
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728 PRE 58RICHARD P. SEAR
‘‘demixed’’: the polymer contracted to form a dense pha
~Fig. 3! partially expelling the spheres~Fig. 4!. The driving
force for the coil-globule transition is the same as that for
demixing into two bulk phases of long rodlike particles a
spherical particles@7#: the excluded volume interaction be
tween the spheres and rods is large and this greatly red
the volume available to the particles. The reduction in v
ume greatly reduces the translational and rotational entr
in phases that have high densities of both rods and sph
favoring demixing into two phases, each with a high dens
of one component but a low density of the other.

The coil-globule transition we have found is continuou
Although flexible polymers such as polystyrene@15,29#
show a continuous coil-globule transition, for DNA the tra
sition is discontinuous@22,23#. The DNA coil suddenly col-
lapses to form a dense globule with hexagonal ordering
the experiments that showed the discontinuous collaps
DNA, the transition was brought about by some combinat
of polyvalent ions, alcohols, and small polymer molecul
see Refs.@22,23# and references therein. A natural assum
tion to make is that the collapse to a dense globule is t
J.
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brought about by ashort rangedattraction, i.e., two DNA
helices only attract each other when they are a few nm ap
As discussed by the author in Refs.@27,28#, the dramatic
collapse to a dense ordered phase is then not surprising
also Refs.@30–32#. The depletion attraction between poly
mer segments due to the presence of the spheres islong
ranged, the range is not of orderD but of orderDs , which is
an order of magnitude larger. It is this difference in ran
that is changing the coil-globule transition from discontin
ous to continuous. Thus adding colloidal particles of s
;20 nm or larger to DNA may produce a continuous c
lapse of the DNA. Such a continuous collapse has not
been seen, as far as the author is aware.
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